LDR ตัวต้านทานไวแสง
ในอุปกรณ์อิเลก ทรอนิกส์ประเภทไวต่อแสง หรือ เปลี่ยน แปลงการทำงานของตัวมันเองตามปริมาณของแสง มีอยู่หลาย อย่าง. ตั้งแต่ LDR ( light dependent resistor ) โฟโตโวลตา อิกเซล ( photovoltaic cell ) ซึ่งจ่ายแรงดันออกมา ได้เมื่อได้รับแสง , โฟโต้ไดโอด ( photodiode ) โฟโต้ทรานซิสเตอร์ ( phototransistor ) ไปจนถึงเอสซีอาร์ ที่ทำงานด้วยแสง ( LASCR - light activated sillicon controlled rectifier ) ซึ่ง ใช้หลักการของสารกึ่งตัวนำทั้งนั้น. อุปกรณ์ ประเภทนี้ที่มีโครงสร้าง และ ลักษณะการทำงานง่ายที่สุดก็เห็นจะ ได้แก่ LDR เพราะ ไม่ได้ใช้หลักการของรอยต่อ พี - เอ็น เหมือนกันแบบอื่นๆ ที่ได้ กล่าวมาแล้วเลย จึงจะนำมาเล่าสู่กันฟังก่อน
โครงสร้าง
ตัว LDR ว่าที่จริงแล้วมีเรียกกันอีกหลายชื่อ เช่น โฟโต้คอนดักตีฟเซล ( photoconductive cell ) หรือ ตัวต้านทาน ไวแสง ( LSR - light sensitive resistor ) ส่วนใหญ่จะทำ ด้วยสารแคดเมียมซัลไฟด์ ( CdS ) หรือไม่ก็แคดเมียมซีนิไนด์ ( CdSe ) ซึ่งทั้งสองตัวนี้ก็เป็นสารประเภทกึ่ง ตัวนำ เอา มาฉาบลงบนแผ่นเซรามิกที่ใช้เป็นฐานรองแล้วต่อ ขาจากสารที่ฉาบ ไว้ออกมา
รูปที่ 1 โครง สร้าง LDR
รูปร่างของมันจะเห็นได้ในรูปที่ 1 ส่วนที่ขดเป็นแนวเล็กๆสี ดำนั่นแหละ ที่ทำหน้าที่ เป็นตัวต้านทานไวแสง และ แนวสีดำ นั้นจะแบ่งพื้นที่ของตัวมันออกเป็น 2 ข้าง ซึ่งถ้าดู ของจริงจะเห็นว่าออกสีทองนั้น เป็นตัวนำไฟฟ้าที่ทำหน้าที่สัมผัส กับตัวต้านทาน ไวแสง เป็นที่สำหรับต่อขาออกมาภายนอก หรือ เรียกว่าอิเล็กโทรด ที่เหลือก็จะ เป็นฐานเซรามิก และ อุปกรณ์ สำหรับห่อหุ้มมัน ซึ่งมีได้หลายแบบ
สมบัติทางแสง
การทำงานของ LDR ก็ ง่ายๆ เพราะ ว่ามันเป็นสารกึ่งตัวนำ เวลามีแสงตกกระทบลงไปก็จะถ่ายทอดพลังงาน ให้กับสาร ที่ฉาบอยู่ ทำให้เกิดโฮลกับอิเล็กตรอนวิ่งกันพล่าน. การที่มีโฮล กับอิเล็กตรอน อิสระนี้มากก็เท่ากับ ความต้านทานลดลงนั่นเอง ยิ่ง ความเข้มของแสงที่ตกกระทบมากเท่าไร ความต้านทานก็ยิ่งลดลงมากเท่านั้น
รูปที่ 2 ตัวอย่าง กราฟแสดงความไวต่อแสงความถี่ต่าง ๆ ของ LDR ทั้ง 2 แบบ เมื่อเทียบกับความไวของตาคน
ในส่วนที่ว่าแสงตกกระทบนั้น มิใช่ว่าจะเป็นแสงอะไรก็ได้ เฉพาะแสงในช่วงความยาวคลื่นประมาณ 4,000 อังสตรอม ( 1 อังสตรอม เท่ากับ 10 - 10 เมตร ) ถึงแระมาณ 10,000 อังสตรอมเท่านั้นที่จะใช้ได้ ( สายตาคนจะเห็นได้ ในช่วงประมาณ 4,000 อังสตรอม ถึง 7,000 อังสตรอม ) ซึ่งคิดแล้วก็ เป็นช่วงคลื่นเพียงแคบ ๆ เมื่อเทียบกับการทำงาน ของอุปกรณ์ไวแสง ประเภทอื่น ๆ แต่ถึงอย่างไรแสงในช่วงคลื่นนี้ ก็มีอยู่ในแสงอาทิตย์ แสงจากหลอดไฟ แบบไส้ และ แสงจากหลอดฟลูออเรสเซนต์ ด้วย หรือ ถ้าจะคิดถึงความยาวคลื่น ที่ LDR จะตอบ สนองไวที่สุดแล้ว ก็มีอยู่หลาย ความยาวคลื่น โดยทั่วไป LDR ที่ทำจากแคดเมียมซัลไฟด์ จะไวต่อแสงที่มีความยาวคลื่นในช่วง 5,000 กว่า อังสตรอม. ซึ่งเราจะเห็นเป็นสีเขียว ไปจนถึงสีเหลือง สำหรับ บางตัวแล้ว ความ ยาวคลื่นที่ไวที่สุดของมันใกล้เคียงกับความยาวคลื่นที่ไว ที่สุดของตาคนมาก ( ตา คนไวต่อความ ยาวคลื่น ประมาณ 5,550 อังสตรอม ) จึงมักจะใช้ทำเป็นเครื่องวัดแสง ในกล้องถ่าย รูป ถ้า LDR ทำจาก แคดเมียมซีลิไนด์ก็จะไวต่อ ความ ยาวคลื่นในช่วง 7,000 กว่า อังสตรอม ซึ่งไปอยู่ใน ช่วงอินฟราเรดแล้ว
ผลตอบสนองทางไฟฟ้า
อัตราส่วนระหว่างความต้านทานของ LDR ในขณะ ที่ไม่มีแสง กับขณะที่มีแสง อาจจะเป็นได้ตั้งแต่ 100 เท่า 1,000 เท่า หรือ 10,000 เท่า แล้วแต่รุ่น แต่โดยทั่วไปแล้วค่าความต้านทานในขณะที่ไม่มีแสงจะอยู่ในช่วง ประมาณ 0.5 MW ขึ้น ไป ในที่มืดสนิทอาจขึ้นไปได้มากกว่า 2 MW และ ในขณะที่มีแสงจะเป็นประมาณ 10 - 20kW ลง ไป อาจจะเหลือเพียงไม่กี่โอห์ม หรือ ไม่ถึงโอห์มก็ได้. ทนแรงดันสูง สุดได้ไม่ต่ำกว่า 100 V และ กำลังสูญเสีย อย่างต่ำประมาณ 50 mW
รูปที่ 3 ผลของการ เปลี่ยนความเข้มแสงในทันทีทันใดกับ LDR
นอกเหนือจากลักษณะสมบัติต่างๆ เหล่านี้แล้วยังมีอีกอย่างหนึ่งที่สำคัญ คือ ปรากฏการณ์ที่เกิดขึ้นจากความ เข้มแสดง เปลี่ยนแปลงอย่างฉับพลัน ซึ่งจะดูตัวอย่างได้ในรูปที่ 3 ถ้า LDR ได้รับแสงที่มีความเข้ม สูงดังเส้น ( ก ) ความต้านทานจะ มีค่า ต่ำ และ ในทันทีที่ความเข้มของแสงถูกลดลงหลือ เพียงระดับอ้างอิง ความต้านทานก็จะค่อยๆ เพิ่มขึ้นไปจนถึงค่าความต้านทาน ที่มันควรจะเป็นในระดับอ้างอิง. แต่แทนที่มันจะไปหยุดอยู่ระดับอ้างอิง มันกลับ เพิ่มเลยขึ้น ไปอีกแล้วจึงจะลดลงมาอยู่ในระดับ อ้างอิง เหมือนกับว่า เบรกมันไม่ค่อยดี และ ในทำนองเดียวกันถ้า เก็บมันไว้ในที่ความเข้มแสงน้อยๆ แล้วเปลี่ยนความเข้มเป็นระดับ อ้างอิงทันที ดังในรูป (ข ) ความต้านทานก็จะลด เลยต่ำลงมา จากระดับอ้างอิงแล้วจึงขึ้นไปใหม่ ยิ่งความเข้มของแสงเท่ากัน LDR แบบแคดเมียมซีนิไน ด์ จะใช้เวลา ในการเข้าสู่สภาวะที่มันควรจะเป็นน้อยกว่า แบบ แคดเมียมซัลไฟต์ แต่ก็จะวิ่งเลยไปไกลกว่าด้วย และ อีกอย่างหนึ่ง ความเร็วในการ เปลี่ยนระดับความต้านทานจากค่าหนึ่งไปอีกค่าหนึ่งช้ามาก. ซึ่งจะอยู่ใน ช่วงของมิลลิวินาทีหรือ บาง ทีก็เป็นวินาที เลย จึงทำให้ LDR ใช้ได้ กับงานความถี่ต่ำๆ เท่านั้น
ทำเป็นเครื่องวัดแสง
ในรูปที่ 4 เป็นวงจรเครื่องวัดแสงแบบง่ายจริงๆ LDR ที่ใช้ ก็ควรจะมีอัตราส่วนของค่าความต้านทาน ระหว่างไม่มีแสง กับมีแสงมากๆ หน่อย เวลาใช้ต้องระวังอย่าให้เข็มมิเตอร์ตีเกินสเกล ของแพงมาเสีย ง่ายๆ อย่าง นี้มันน่าเจ็บใจตัวเอง
รูปที่ 4 เครื่อง วัดแสงแบบง่ายที่สุด
อีกวงจรหนึ่งในรูปที่ 5 เป็นวงจรที่ดัดแปลงให้ดีขึ้นแล้วดดยเอาออปแอมป์เบอร์ 741 เข้ามา ช่วยทำให้ไวขึ้น มาก จะเอา ดิจิตอลมัลติมิเตอร์มา ต่อแทนแบบเข็มก็ได้ แต่ต้องระวังแสงจาก LED จะไปกวนการทำงานของ LDR
รูปที่ 5 วงจร เครื่องวัดแสงที่ปรับปรุงขึ้นแล้ว
สวิตซ์ทำงานด้วยแสง
การใช้ LDR ทำงานในวงจรปิดเปิดสวิตซ์ เราก็ จะใช้เพียง 2 อย่างเท่านั้น คือ มีแสง หรือ ไม่มีแสง. โดย ทั่วไปเราจะ ใช้วิธีเอามาอนุกรมกับตัวต้านทานตัวหนึ่ง แล้วต่อเป็นวงจรแบ่งแรงดันออกมาตามรูปที่ 6 อย่างในรูป ( ก ) จะทำงานดังนี้ คือ ถ้ามีแสงสว่าง LDR จะมีความต้านทานต่ำ ทำให้แรงดัน ส่วนใหญ่มาตกคร่อม R 1 เสีย หมด แรงดันเอาต์พุต จึงสูงเกือบเท่า แรงดันไฟเลี้ยง และ ถ้าไม่มี แสง LDR จะมีความต้านทานสูง แรงดันส่วนใหญ่จะ ไปตกที่ LDR แรง ดันเอาต์พุต จึงเกือบเป็น 0 โวลต์
รูปที่ 6 หลักการ ใช้ LDR ในวงจร ปิดเปิดสวิตซ์
ในรูปที่ 6 ( ข ) วงจรจะทำงาน ในทางตรงข้าม เพียงแต่สลับที่ระหว่าง LDR กับ R 1 เวลามีแสงสว่าง เอาต์พุตก็จะเกือบ เป็น 0 โวลต์ เวลาไม่มีแสง สว่างเอาต์พุตก็เกือบเท่าแรงดันไฟเลี้ยงจะเห็นได้ว่ากลับกับกรณีแรก
รูปที่ 7 ตัวอย่าง วงจรควบคุมสวิตซ์โดยรีเลย์จะทำงานเมื่อไม่มีแสงสว่าง
ทั้ง 2 กรณี จะมีวงจรที่ต่อออกไปสำหรับจับสัญญาณว่ามีแสงสว่างหรือไม่. แล้วนำไปควบ คุมสวิตช์ อีกทีให้ ทำงานใน กรณีที่ต้องการ. ในรูปที่ 7 เป็นตัวอย่างวงจรซึ่งรี เลย์จะทำงานเมื่อไม่มีแสงสว่าง ซึ่งถ้าเราไม่ต้องการแบบนี้ และ อยากให้รีเลย์ ทำงาน เมื่อมีแสงสว่างก็เพียงแต่สลับที่ระหว่าง LDR กับความต้านทานปรับค่าได้ 100 kW เท่านั้น
รูปที่ 8 วงจร เตือนภัยเป็นเสียงเมื่อมีแสงสว่างกระทบ LDR
ในรูปที่ 8 ก็เป็น ตัวอย่างวงจรอีกอันหนึ่งทำงานเมื่อมีแสงสว่าง ตัวอย่างอื่นๆ ก็ได้แก่ วงจรจับควันไฟ , วงจรกะพริบ เพื่อความ ปลอดภัยเมื่อมีรถยนต์แล่นผ่านมา. ซึ่งโดยหลักการแล้วไม่ยาก คงจะนำไปดัดแปลงใช้กันได้
ใช้ LDR ตลอดช่วง
รูปที่ 9 ตัวอย่าง วงจรเปลี่ยนสัญญาณแสงเป็นสัญญาณ
นอกจากวงจรเครื่องวัดแสง ซึ่งเป็นที่ รู้จักกันดีในการประยุกต์ LDR ให้ใช้งานแบบทุกช่วงการเปลี่ยนแปลงแล้ว ยังมีคน ดัดแปลงไปใช้ในวงจรอื่นๆ อีก เช่น วงจรแปลงสัญญาณอะนา ลอก เป็นสัญญาณดิจิตอล เพื่อเชื่อมต่อส่วนที่เป็น วงจรอะนา ล็อก ให้ส่งสัญญาณผ่านเข้าไปทำงานในวงจรดิจิตอลได้ ดังเช่น รูปที่ 9 เป็นวงจรแปลงระดับความ เข้มแสง ซึ่งเป็นสัญญาณ อะ นาล็อกให้ออกมา เป็นจำนวนลูกคลื่นสี่เหลี่ยม ยิ่งความเข้มแสงมากเท่าไหร่ จำนวนลูกคลื่น สี่เหลี่ยมก็จะยิ่งออกมามากเท่านั้น วงจรนี้ ใช้ไอซี 555 ความถี่ของคลื่นที่ออกมาจะได้ประมาณ 22kHz ถ้าเอาไป รับแสงใกล้ๆ หลอดไฟขนาด 60 วัตต์ แต่จะ เหลือเพียงประมาณ 1Hz ในที่มืด ถ้าเอาลำโพงอนุกรมกับตัวต้านทาน 220W ไปต่อเข้ากับขา 3 และ ไฟบวกก็จะได้ยินเสียง สูงๆต่ำๆ ตามความเข้มของแสง ลองดูก็ได้คงจะสนุกไม่เลว และ ตัวอย่างอีกอันหนึ่งจะเห็นได้ในรูปที่ 10 เป็น วงจรเปิด - หรี่ - ปิดไฟ ซึ่งจะควบคุมให้หลอดไฟสว่างขึ้นในขณะ ที่แสงสว่าง ของสภาพแวดล้อมลดลงเป็นตัวอย่างที่ดีเหมือนกัน
รูปที่ 10 วงจรเปิด-หรี่-ปิดไฟ